108 research outputs found

    On the resolution power of Fourier extensions for oscillatory functions

    Full text link
    Functions that are smooth but non-periodic on a certain interval possess Fourier series that lack uniform convergence and suffer from the Gibbs phenomenon. However, they can be represented accurately by a Fourier series that is periodic on a larger interval. This is commonly called a Fourier extension. When constructed in a particular manner, Fourier extensions share many of the same features of a standard Fourier series. In particular, one can compute Fourier extensions which converge spectrally fast whenever the function is smooth, and exponentially fast if the function is analytic, much the same as the Fourier series of a smooth/analytic and periodic function. With this in mind, the purpose of this paper is to describe, analyze and explain the observation that Fourier extensions, much like classical Fourier series, also have excellent resolution properties for representing oscillatory functions. The resolution power, or required number of degrees of freedom per wavelength, depends on a user-controlled parameter and, as we show, it varies between 2 and \pi. The former value is optimal and is achieved by classical Fourier series for periodic functions, for example. The latter value is the resolution power of algebraic polynomial approximations. Thus, Fourier extensions with an appropriate choice of parameter are eminently suitable for problems with moderate to high degrees of oscillation.Comment: Revised versio

    On the computation of Gaussian quadrature rules for Chebyshev sets of linearly independent functions

    Get PDF
    We consider the computation of quadrature rules that are exact for a Chebyshev set of linearly independent functions on an interval [a,b][a,b]. A general theory of Chebyshev sets guarantees the existence of rules with a Gaussian property, in the sense that 2l2l basis functions can be integrated exactly with just ll points and weights. Moreover, all weights are positive and the points lie inside the interval [a,b][a,b]. However, the points are not the roots of an orthogonal polynomial or any other known special function as in the case of regular Gaussian quadrature. The rules are characterized by a nonlinear system of equations, and earlier numerical methods have mostly focused on finding suitable starting values for a Newton iteration to solve this system. In this paper we describe an alternative scheme that is robust and generally applicable for so-called complete Chebyshev sets. These are ordered Chebyshev sets where the first kk elements also form a Chebyshev set for each kk. The points of the quadrature rule are computed one by one, increasing exactness of the rule in each step. Each step reduces to finding the unique root of a univariate and monotonic function. As such, the scheme of this paper is guaranteed to succeed. The quadrature rules are of interest for integrals with non-smooth integrands that are not well approximated by polynomials

    Fast Algorithms for the computation of Fourier Extensions of arbitrary length

    Get PDF
    Fourier series of smooth, non-periodic functions on [1,1][-1,1] are known to exhibit the Gibbs phenomenon, and exhibit overall slow convergence. One way of overcoming these problems is by using a Fourier series on a larger domain, say [T,T][-T,T] with T>1T>1, a technique called Fourier extension or Fourier continuation. When constructed as the discrete least squares minimizer in equidistant points, the Fourier extension has been shown shown to converge geometrically in the truncation parameter NN. A fast O(Nlog2N){\mathcal O}(N \log^2 N) algorithm has been described to compute Fourier extensions for the case where T=2T=2, compared to O(N3){\mathcal O}(N^3) for solving the dense discrete least squares problem. We present two O(Nlog2N){\mathcal O}(N\log^2 N ) algorithms for the computation of these approximations for the case of general TT, made possible by exploiting the connection between Fourier extensions and Prolate Spheroidal Wave theory. The first algorithm is based on the explicit computation of so-called periodic discrete prolate spheroidal sequences, while the second algorithm is purely algebraic and only implicitly based on the theory

    On the numerical stability of Fourier extensions

    Full text link
    An effective means to approximate an analytic, nonperiodic function on a bounded interval is by using a Fourier series on a larger domain. When constructed appropriately, this so-called Fourier extension is known to converge geometrically fast in the truncation parameter. Unfortunately, computing a Fourier extension requires solving an ill-conditioned linear system, and hence one might expect such rapid convergence to be destroyed when carrying out computations in finite precision. The purpose of this paper is to show that this is not the case. Specifically, we show that Fourier extensions are actually numerically stable when implemented in finite arithmetic, and achieve a convergence rate that is at least superalgebraic. Thus, in this instance, ill-conditioning of the linear system does not prohibit a good approximation. In the second part of this paper we consider the issue of computing Fourier extensions from equispaced data. A result of Platte, Trefethen & Kuijlaars states that no method for this problem can be both numerically stable and exponentially convergent. We explain how Fourier extensions relate to this theoretical barrier, and demonstrate that they are particularly well suited for this problem: namely, they obtain at least superalgebraic convergence in a numerically stable manner

    On the eigenmodes of periodic orbits for multiple scattering problems in 2D

    Get PDF
    Wave propagation and acoustic scattering problems require vast computational resources to be solved accurately at high frequencies. Asymptotic methods can make this cost potentially frequency independent by explicitly extracting the oscillatory properties of the solution. However, the high-frequency wave pattern becomes very complicated in the presence of multiple scattering obstacles. We consider a boundary integral equation formulation of the Helmholtz equation in two dimensions involving several obstacles, for which ray tracing schemes have been previously proposed. The existing analysis of ray tracing schemes focuses on periodic orbits between a subset of the obstacles. One observes that the densities on each of the obstacles converge to an equilibrium after a few iterations. In this paper we present an asymptotic approximation of the phases of those densities in equilibrium, in the form of a Taylor series. The densities represent a full cycle of reflections in a periodic orbit. We initially exploit symmetry in the case of two circular scatterers, but also provide an explicit algorithm for an arbitrary number of general 2D obstacles. The coefficients, as well as the time to compute them, are independent of the wavenumber and of the incident wave. The results may be used to accelerate ray tracing schemes after a small number of initial iterations.Comment: 24 pages, 9 figures and the implementation is available on https://github.com/popsomer/asyBEM/release

    High-frequency asymptotic compression of dense BEM matrices for general geometries without ray tracing

    Full text link
    Wave propagation and scattering problems in acoustics are often solved with boundary element methods. They lead to a discretization matrix that is typically dense and large: its size and condition number grow with increasing frequency. Yet, high frequency scattering problems are intrinsically local in nature, which is well represented by highly localized rays bouncing around. Asymptotic methods can be used to reduce the size of the linear system, even making it frequency independent, by explicitly extracting the oscillatory properties from the solution using ray tracing or analogous techniques. However, ray tracing becomes expensive or even intractable in the presence of (multiple) scattering obstacles with complicated geometries. In this paper, we start from the same discretization that constructs the fully resolved large and dense matrix, and achieve asymptotic compression by explicitly localizing the Green's function instead. This results in a large but sparse matrix, with a faster associated matrix-vector product and, as numerical experiments indicate, a much improved condition number. Though an appropriate localisation of the Green's function also depends on asymptotic information unavailable for general geometries, we can construct it adaptively in a frequency sweep from small to large frequencies in a way which automatically takes into account a general incident wave. We show that the approach is robust with respect to non-convex, multiple and even near-trapping domains, though the compression rate is clearly lower in the latter case. Furthermore, in spite of its asymptotic nature, the method is robust with respect to low-order discretizations such as piecewise constants, linears or cubics, commonly used in applications. On the other hand, we do not decrease the total number of degrees of freedom compared to a conventional classical discretization. The combination of the ...Comment: 24 pages, 13 figure
    corecore